Hyperbolic Geometry
نویسندگان
چکیده
منابع مشابه
An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملMetric and periodic lines in the Poincare ball model of hyperbolic geometry
In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.
متن کاملUse of Models of Hyperbolic Geometry in the Creation of Hyperbolic Patterns
In 1958, the Dutch artist M.C. Escher became the first person to create artistic patterns in hyperbolic geometry. He used the Poincar é circle model of hyperbolic geometry. Slightly more than 20 years later, my students and I implemented a computer program that could draw repeating hyperbolic patterns in this model. The ...
متن کاملThe analytic continuation of hyperbolic space
We define and study an extended hyperbolic space which contains the hyperbolic space and de Sitter space as subspaces and which is obtained as an analytic continuation of the hyperbolic space. The construction of the extended space gives rise to a complex valued geometry consistent with both the hyperbolic and de Sitter space. Such a construction shed a light and inspires a new insight for the ...
متن کاملEinstein's velocity addition law and its hyperbolic geometry
Following a brief review of the history of the link between Einstein’s velocity addition law of special relativity and the hyperbolic geometry of Bolyai and Lobachevski, we employ the binary operation of Einstein’s velocity addition to introduce into hyperbolic geometry the concepts of vectors, angles and trigonometry. In full analogy with Euclidean geometry, we show in this article that the in...
متن کاملHyperbolic Trigonometry and its Application in the Poincaré Ball Model of Hyperbolic Geometry
Hyperbolic trigonometry is developed and illustrated in this article along lines parallel to Euclidean trigonometry by exposing the hyperbolic trigonometric law of cosines and of sines in the Poincaré ball model of n-dimensional hyperbolic geometry, as well as their application. The Poincaré ball model of 3-dimensional hyperbolic geometry is becoming increasingly important in the construction o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996